

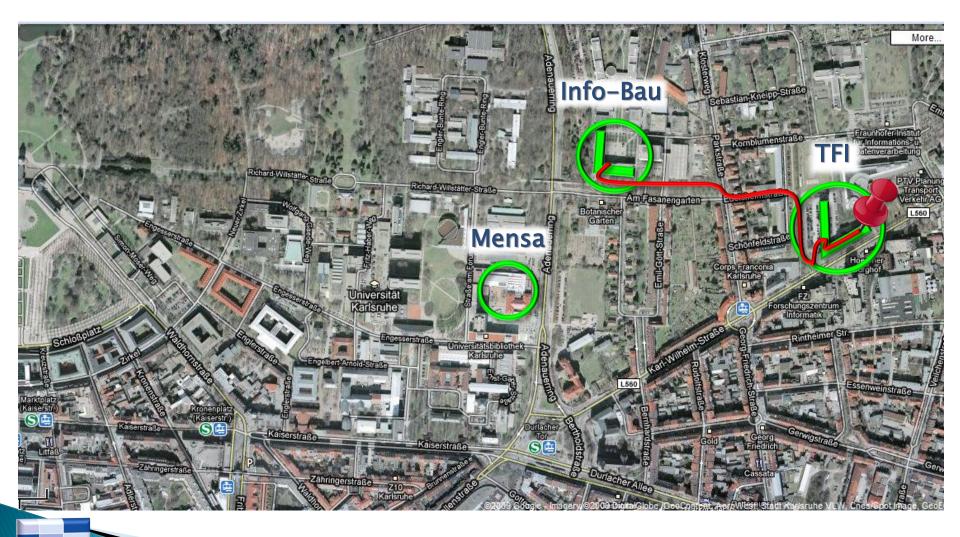
Institut für Technische Informatik Chair for Embedded Systems - Prof. Dr. J. Henkel

Karlsruhe Institute of Technology

Vorlesung im SS 2016

Reconfigurable and Adaptive Systems (RAS)

Marvin Damschen, Lars Bauer, Jörg Henkel


Organisation

- Lecture time:
- Homepage:

- Slides Login:
- Contact:

Mi., 15.45 – 17.15 Bld. 50.34, HS -102 http://ces.itec.kit.edu/1317_1320.php You can find the slides from previous years on our old homepage: http://cesweb.itec.kit.edu/teaching/ Login: "student" Passwd: "CES-Student" marvin.damschen@kit.edu Haid-und-Neu-Str. 7 Bld. 07.21, Rm. B2–314.4 (B–Wing, 2nd Floor)

CES @ Technologiefabrik (TFI)

M. Damschen, KIT, 2016

Questions during the lecture

> Simply let me know / interrupt me

M. Damschen, KIT, 2016

RAS Exam

CS Diploma:

 Vertiefungsfach 8: Entwurf eingebetteter Systeme und Rechnerarchitekturen

CS Master:

- Modul: Rekonfigurierbare und Adaptive Systeme [IN4INRAS] (3 ECTS)
- Modul: Eingebettete Systeme: Weiterführende Themen [IN4INESWTN] (10 ECTS)
- Modul: Advanced Computer Architecture [IN4INACA] (10 ECTS)
- Other Study Courses (e.g. EE): ask individually

Teaching @ CES, SS 2016

Lectures

- RAS
- Low Power Design
- Labs
 - Entwurf eingebetteter Systeme
 - Entwurf von eingebetteten applikationsspezifischen Prozessoren
 - Low Power Design and Embedded Systems

Seminars

- <u>Rekonfigurierbare</u>
 <u>Eingebettete Systeme</u>
- Dependability in Embedded Systems
- Stereo Video Processing
- Multicore for Multimedia
 Processors
- Low Power Design for Embedded Systems
- Internet of Things for Healthcare

More Info: <u>http://ces.itec.kit.edu/26.php</u>

Theses @ CES

Chair for Embedded Systems

Chair for Embedded Systems

CES

Prof. Dr. J. Henkel

	Available Theses	Ongoing student works Con	npleted student	works	
elcome		Abbreviation: D - Dipl	oma Thesis, M - M	laster Thesis,	S - Student Work, B - Bachelor Thes
vents/News	Торіс			Type of work	Mentor
ublications	Analyse von Rekonfigurierbaren Mehrkernsystemen für Echtzeitkritische Anwendungen (> PDF 🖒)		D/M/B	Damschen, Marvin/Bauer, La	
eople	ECG processing for IoT-based healthcare devices (▶ PDF ☑)			D/M	→Samie, Farzad />Bauer, Lars
esearch	Context-Aware data compression for Internet-of-Things (IoT) (▶ PDF 🖾)		oT) (• PDF 🖄)	D/M	∙Samie, Farzad /•Bauer, Lars
eaching	Approximate Image Processing in Android-based IoT devices ($\blacktriangleright \text{PDF} \ensuremath{ \square}$)			B/M	 Castro-Godínez, Jorge / Shafique, Muhammad
ES free Software	Approximate Motion Tracking in Android-based IoT devices ($\blacktriangleright \text{PDF}$ 🗹)			B/M	Castro-Godínez, Jorge / Shafique, Muhammad
ob Openings	Automatic Approximate Accelerator Generation using High Level Synthesis Tools (${\bf +PDF}$ ${\bf C}$)		B/M	Castro-Godínez, Jorge / Shafique, Muhammad	
Internals	OpenCL/CUDA Progra	aming for Reliability Analysis (PDF	2)	D/M/B	∙van Santen, Victor / ∙Amrouch Hussam
	Reliability of Electrica	I Circuits (▶ PDF ☑)		D/M/B	→van Santen, Victor / →Amrouch Hussam
	Degradation Effects in	n Microprocessors (▶ PDF ☑)		D/M/B	∙van Santen, Victor / ∙Amrouch Hussam
	Design and implement processors () PDF @	ntation of hardware accelerators for r)	econfigurable	В	Kerekare, Srinivas Rao / Bau Lars
	Area and Energy eva a reconfigurable proc	luation of a combined ASIC+FPGA in essor (▶ PDF ☑)	plementation of	В	›Kerekare, Srinivas Rao / ›Damschen, Marvin / ≀Bauer, Li
	Entwicklung von Spez ▶ PDF ☑)	ialbefehlen zur Lösung von Shallow ۱	Nater Equations (В	Damschen, Marvin/Bauer, La
	Simulation eines Rekonfigurierbaren Systems für Zeitkritische Anwendungen (> PDF 🖒)		В	Damschen, Marvin/Bauer, La	
	Entwurf einer Hardware/Software Co-Simulations-plattform für Rekonfigurierbare Architekturen (> PDF 🗹)		S/B	→Zhang, Hongyan />Bauer, Lars	
	Design einer grafischen Oberfläche in Qt für die Visualisierung eines Multiagentensystems (+ PDF ☎)		в	•Wenzel, Volker	

M. Damschen, KIT, 2016

Theses @ CES

- http://ces.itec.kit.edu/69.php
- **Note:** Info on homepage is typically not up-to-date
 - If you are interested in a particular topic: better ask individually
- There are often SADABAMA theses or Hiwi jobs available in the scope of reconfigurable systems
- Main projects:
 - *i*-Core: invasive Core
 - Real-time: Analysis and design of predictable reconfigurable architectures
 - OTERA: Online Test Strategies for Reliable Reconfigurable Architectures
- Topics:
 - Algorithms for Runtime System, Operating System, ...
 - Static Program Analysis, Toolchain, Compiler, Synthesis, ...
 - Architecture, Hardware Prototype, Simulation Environment, ...

Beneficial Previous Knowledge

- Rechnerstrukturen
 - Prerequisites
- Eingebettete Systeme
 - ES1: Optimierung und Synthese Eingebetteter Systeme
 - ES2: Entwurf und Architekturen für Eingebettete Systeme
 - The core topics (e.g. details about FPGA architectures) will be recapitulated in the scope of this lecture
 - Thus, the contents of ES1 and ES2 are beneficial but not required in full detail

General Literature

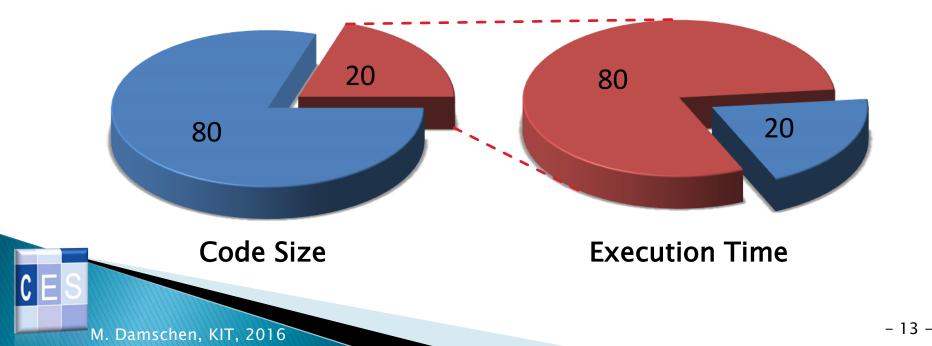
- "Fine- and Coarse-Grain Reconfigurable Computing",
 S. Vassiliadis and D. Soudris, Springer 2007.
- "Runtime adaptive extensible embedded processors a survey", H. P. Huynh and T. Mitra, SAMOS, pp. 215–225, 2009.
- "Reconfigurable computing: architectures and design methods", T.J. Todman et al., IEE Proceedings Computers & Digital Techniques, vol. 152, no. 2, pp. 193-207, 2005.
- "Reconfigurable Instruction Set Processors from a Hardware/Software Perspective", F. Barat et al., IEEE Transactions on Software Engineering, vol. 28, no. 9, pp. 847-862, 2002.

Institut für Technische Informatik Chair for Embedded Systems - Prof. Dr. J. Henkel

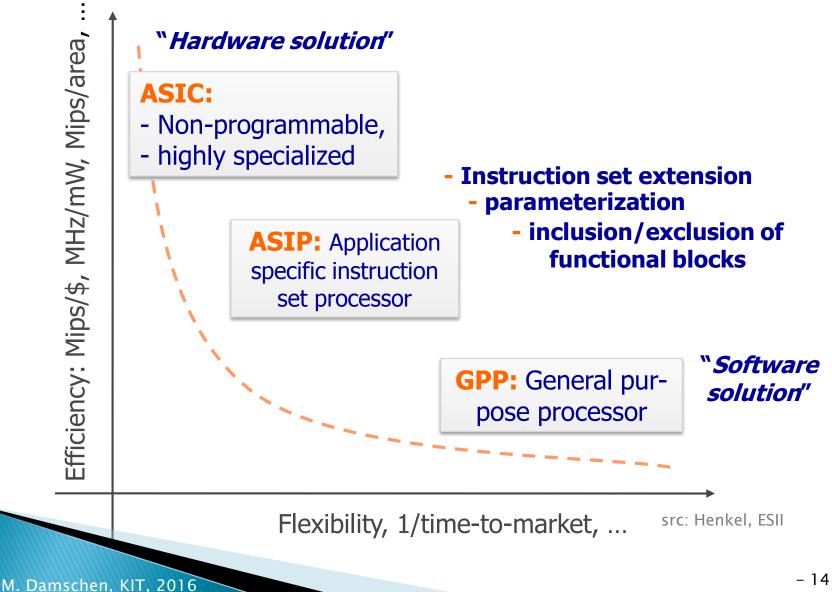
Karlsruhe Institute of Technology

Reconfigurable and Adaptive Systems (RAS)

1. Introduction and Motivation: The Demand for Adaptivity

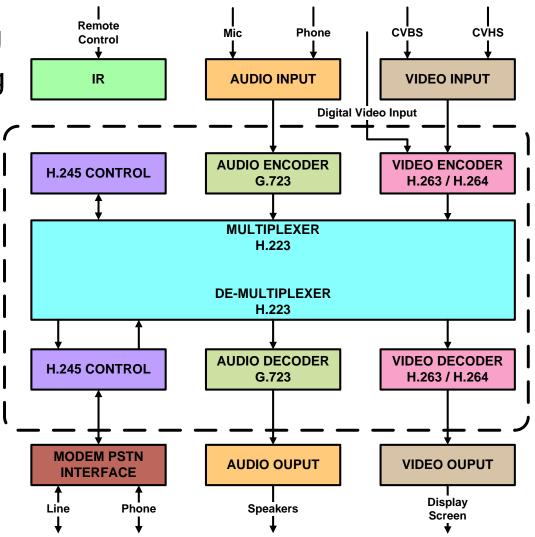

Designing Embedded Systems

- Typical approach:
 - Static analysis of system requirements (e.g. computational hot spots)
 - Build optimized system
- Today's requirements:
 - More functionality
 - Increasing complexity
 - Non-functional constraints
- Problem:
 - Statically chosen design point has to match all requirements
 - Typically inefficient for individual components (e.g. tasks or hot spots)

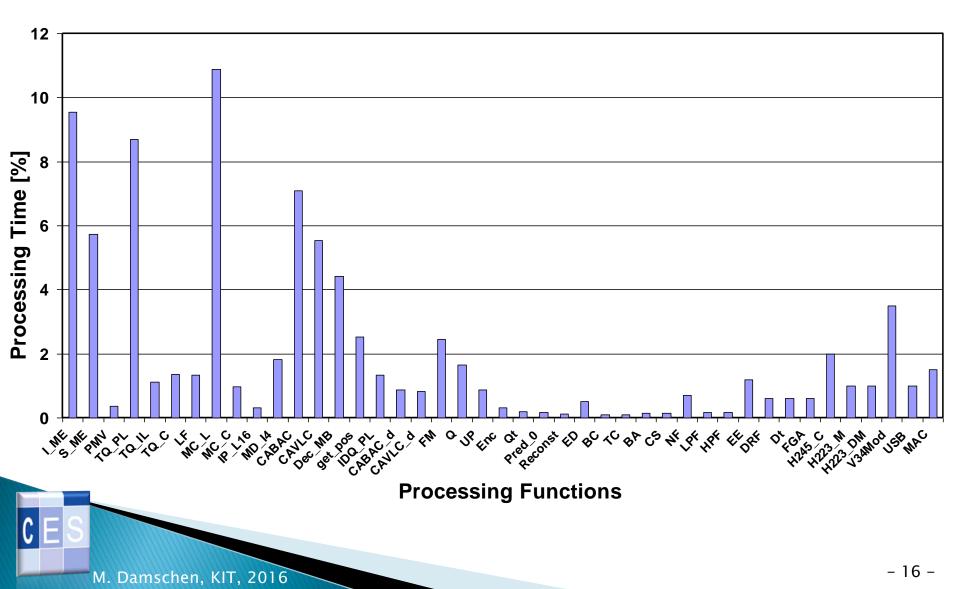


Definition 'Computational Hot Spot'

- A rather small part of the application that corresponds to a rather large part of the execution time
 - Also called 'Computational Kernel'
 - Typically: inner loop
 - 80/20 rule (90/10 rule etc.)

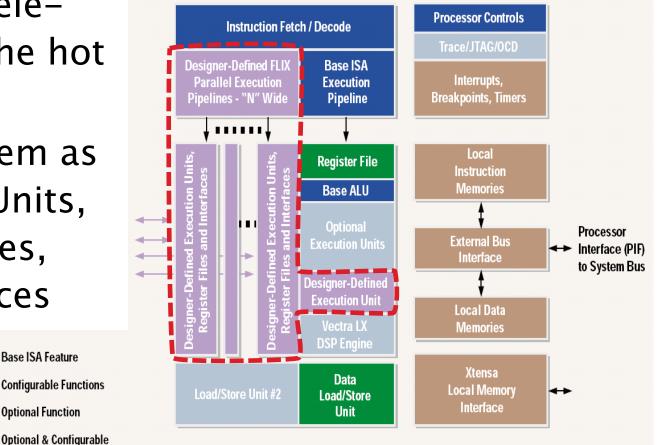

Typical Implementation Alternatives

First Example: H.324 Video Conferencing


- Video En-/Decoding
- Audio En-/Decoding
- Data (De-)Multiplexing
- Control protocol

M. Damschen, KIT, 2016

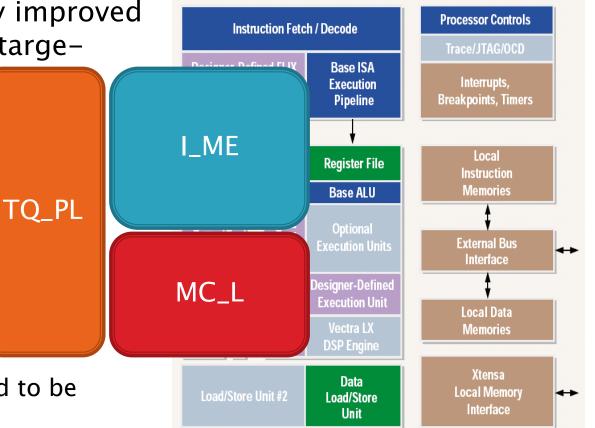
Hotspots in H.324 Video Conferencing


ASIP Implementation

Base ISA Feature

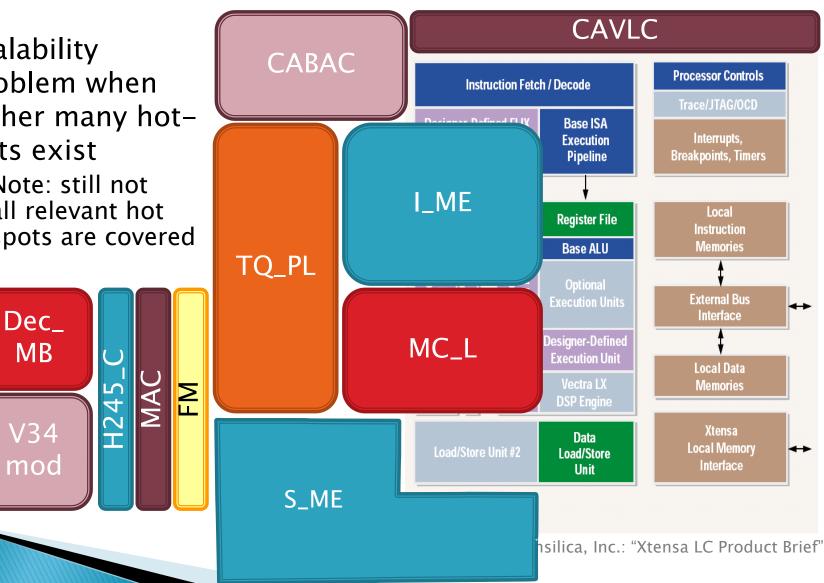
Optional Function

Designer-Defined Features (TIE)


- Design accelerators for the hot spots
- Connect them as Execution Units, **Register Files**, and Interfaces

src: Tensilica, Inc.: "Xtensa LC Product Brief"

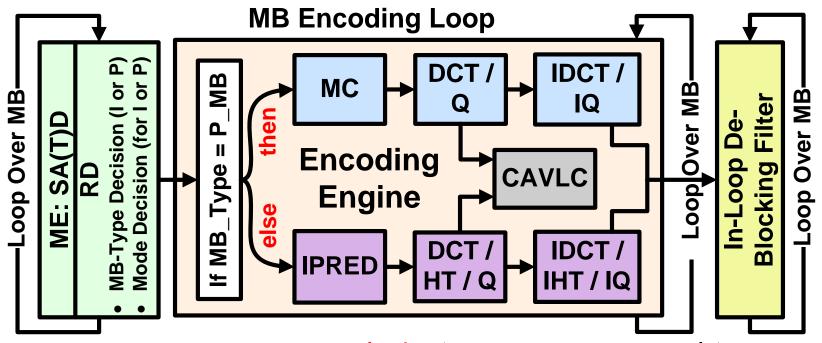
ASIP Implementation (cont'd)


- Provides noticeably improved performance after targeting the major hot spots
- However, performance still not suf- ficient to achieve real- time require- ments
 - More hot spots need to be accelerated

src: Tensilica, Inc.: "Xtensa LC Product Brief"

ASIP Implementation (cont'd)

- Scalability problem when rather many hotpots exist
 - Note: still not all relevant hot spots are covered

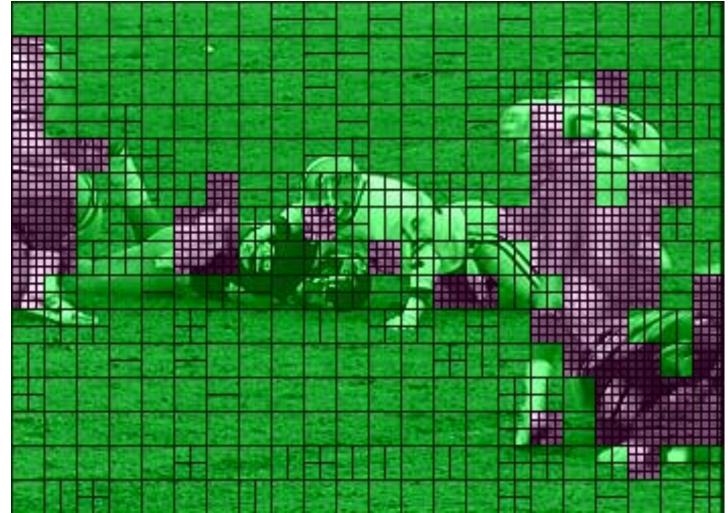

Summary of ASIP Implementation

- ASIPs perform well when
 - 1. rather few hot spots need to be accelerated and
 - 2. those hot spots are well known in advance
- ASIPs are less efficient when targeting

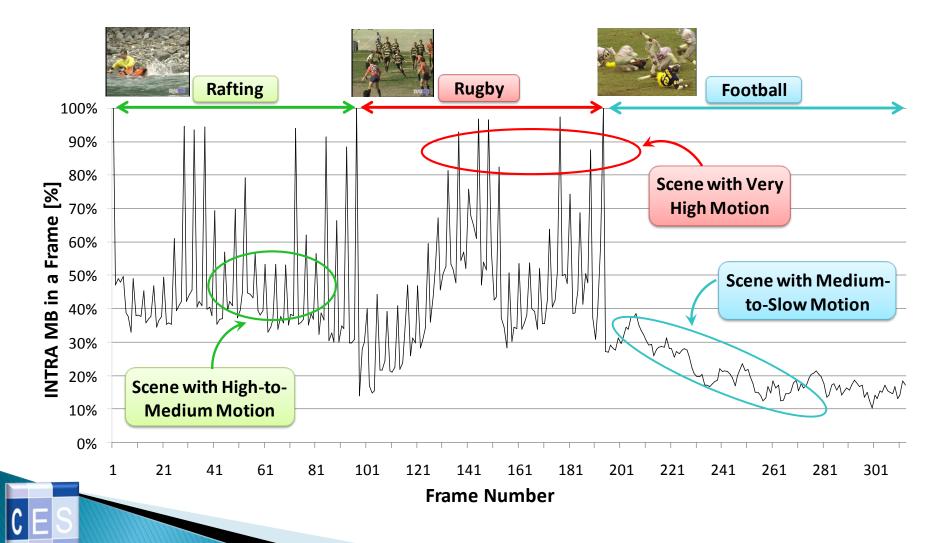
many hot spots or unknown hot spots

- All accelerators are provided statically (i.e. they require area and consume power) even though typically just a few of them are needed at a certain time
- Even for a given application it may not necessarily be clear, which parts are 'hot' during execution as this may depend on input data (as demonstrated in the following)
- In such situations a different architecture might be preferable

Second Example: H.264 video Encoder

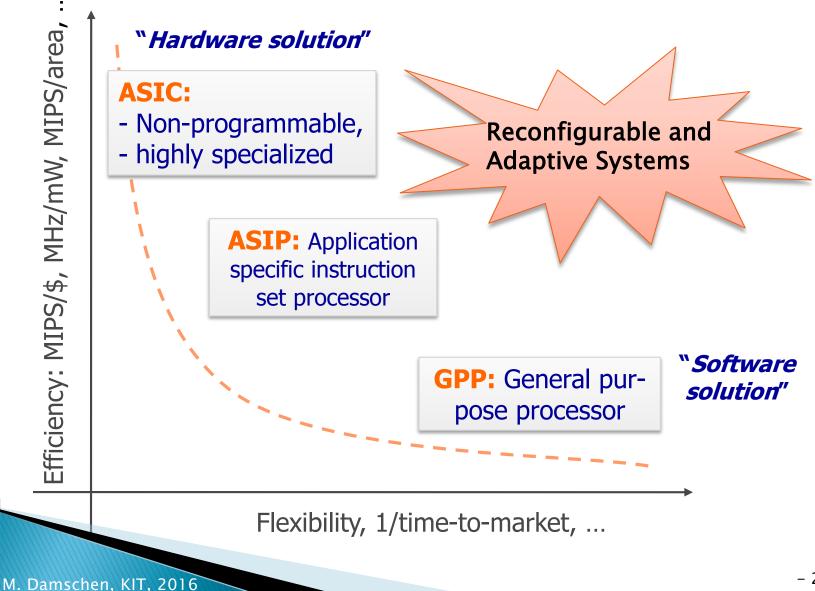

- Iterates on MacroBlocks (MBs, i.e. 16x16 pixels)
- > 2 different MB-types
 - → different computational paths with different computational requirements
 - I-MB (spatial prediction)
 - P-MB (temporal prediction)

0

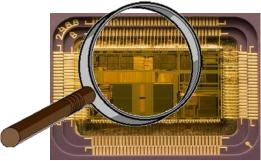

Example: Football Video

I–MB P–MB

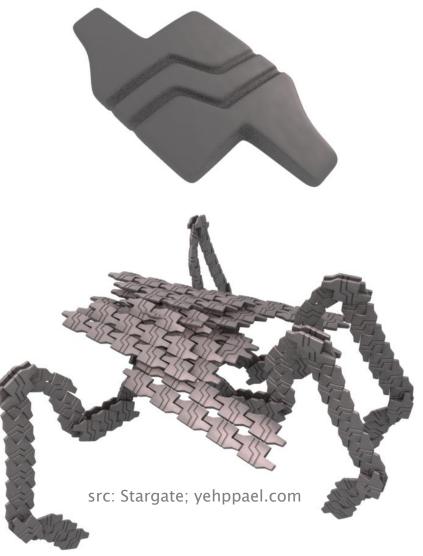
<u>Note</u>: 16x16 MBs can be partitioned into sub-MBs, e.g. 16x8, 8x8, down to 4x4


Example: Distribution of I-MBs in Medium-to-VeryHigh Motions

Conclusion: Demand for Adaptivity


- Even for a well known application it is not always clear which parts will be 'hot' (e.g. according computational complexity) and thus benefit from accelerators
 - This depends on changing input data and control flow
- Even more complex: multi-tasking scenarios
 - Not clear, which applications will execute at the same time
 - Not clear, which applications will execute at all (user can download new applications)
 - This significantly increases the number of potential hot spots
 Andly possible to address this with an ASIP
- Systems that fulfill the demand for adaptivity may lead to
 - **Better performance** (absolute criteria)
 - Higher Efficiency (relative criteria e.g. performance per area etc.)
 - Lower cost (no redesign if specifications change, no overdesign to cover all scenarios)

Potentials of RAS


Potentials of RAS (cont'd)

- Providing accelerators for hot spots on demand
- Efficient dependability/reliability and fault tolerance
 - Rather than providing static redundancy or hardened devices, use online monitoring (BIST: Build-in Self-Test) to detect faults and use reconfiguration and adaptation to react accordingly
- Reducing the design/development costs
 - Hardware bug fixes, hardware updates
 - Avoids hardware redesign
- Shorter Time-to-market
 - The time between idea and product
- Improved efficiency
 - E.g. energy reduction due to better resource utilization
- So-called 'Self-x' properties (explained in the following)

Self-organisation/Selfconfiguration

- The ability to determine and establish feasible/ good setups
 - Composed out of predetermined elements
 - Or created from scratch (online-synthesis)
 - Or implicitly created (emergent behavior)

Self-adaptation/Self-optimization

- The ability to modify/ improve the system setup towards maximizing a certain cost function (e.g. performance, energy saving, or efficiency)
- The cost function is not necessarily fixed, but it may vary, depending on external requirements, goals etc.

src: M. C. Escher

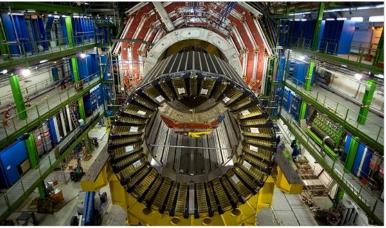
Self-healing

- The ability to resist, tolerate, or correct certain faults
- It is not necessarily required to explicitly detect them
- It is not necessarily required to operate with the same performance, efficiency etc. as before the fault
 - Graceful degradation

src: T-800; spill.com

src: T-1000; geekologie.com

src: T-1000; movie-infos.net


Sneak Preview

Techniques for (Self-) Reconf.

- How to use/develop/reconfigure accelerators
- Optimizations (compile time/run time)
- Different flavors of reconfigurable processors
 - Basic systems
 - Highly efficient/adaptive systems
 - Online synthesis
- New Technologies for reconfigurable devices and innovative products
- Improving system reliability by reconfiguration

src: Mars Rover, newscientist.com

src: CERN, nytimes.com